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Abstract We study the model M consisting of “general games” with noncompact action
space, together with an associated abstract rationality function. We prove that M is structurally
stable and robust to ε-equilibria for “almost all” parameters. As applications, we investigate
structural stability and robustness to bounded rationality for noncooperative games, multi-
objective optimizations and fixed point problems satisfying existence and some continuity
conditions. Specifically, we introduce concrete rationality functions for such three kinds of
problems with both payoffs and strategy sets, objective functions and domain spaces, and cor-
respondence and domain spaces as parameters, respectively, and show the generic structural
stability and robustness to bounded rationality for the corresponding model Ms.

Keywords Structural stability · Robustness · Bounded rationality · Nash equilibrium ·
Multiobjective optimization · Fixed point

1 Introduction and preliminaries

One of the standard interpretations of noncooperative game theory is the full rationality of
players. As is well known, perfect rationality that underlies most economic models is far too
strict and bounded rationality is more reasonable as a basis for economic analysis, see [6]
and [7] and references therein. Anderlini and Canning [1] established an abstract framework,
model M , a parameterized class of “general games” together with an associated abstract ratio-
nality function, and defined ε-equilibria, equilibria and robustness to ε-equilibria. Then they
introduced the notion of structural stability: a model is structurally stable if the equilibrium
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set (under full rationality) varies continuously with changes in the parameter values. They
proved that, under some conditions, model M is robust to ε-equilibria if and only if it is
structurally stable. Following [1], under some weaker assumptions than those in [1], Yu and
Yu [8,9] showed that the model M is structurally stable and robust to ε-equilibria for “almost
all” parameter values.

A model M is a quadruple {�, X, F, R} with a parameter space �, an action space X , a
feasibility correspondence F :�× X → 2X which defines a further correspondence f :� →
2X , f (λ) = {x ∈ X : x ∈ F(λ, x)}, and a rationality function R : Graph( f ) → R+, with
R(λ, x) = 0 corresponding to the full rationality, where Graph( f ) = {(λ, x) ∈ � × X : x ∈
f (λ)}. For any λ ∈ � and any ε ≥ 0, the set of ε-equilibria at λ is defined as

E(λ, ε) = {x ∈ f (λ) : R(λ, x) ≤ ε}.
Particularly, the set of equilibria at λ is defined as

E(λ) = E(λ, 0) = {x ∈ f (λ) : R(λ, x) = 0}.
The main assumptions here are:

(1) (�, ρ) is a complete metric space, (X, d) is a metric space (may be noncompact);
(2) f : � → 2X is upper semicontinuous, and for any λ ∈ �, f (λ) is nonempty and

compact;
(3) R : Graph( f ) → R+ is lower semicontinuous; and
(4) for any λ ∈ �, E(λ) �= ∅.

Clearly, under these assumptions, E(λ, ε) is compact for any (λ, ε) ∈ � × R+.
As the same in [8,9], the model M is robust to ε-equilibria at λ ∈ � if for any δ > 0,

there exists an ε̄ > 0 such that for any ε with 0 < ε < ε̄ and any λ′ ∈ � with ρ(λ′, λ) <

ε̄, h(E(λ′, ε), E(λ′)) < δ, where h is the Hausdorff distance on X . The model M is struc-
turally stable at λ ∈ � if the equilibrium correspondence E : � → 2X is continuous at λ.

Clearly, the assumptions above are weaker than those in [8,9]. But under the weaker con-
ditions, we will show that theorems in [8,9] still hold, and we will give some applications.

Now we recall some notions of continuity of correspondence. Let X and Y be two metric
spaces, K (X) be the set of all nonempty compact subsets of X and F : Y → K (X) be a
correspondence. F is said to be upper semicontinuous at y ∈ Y if for any open set U in X
with U ⊃ F(y), there is an open neighborhood O(y) of y such that U ⊃ F(y′) for each
y′ ∈ O(y); F is said to be lower semicontinuous at y if for any open set U with U ∩F(y) �= ∅,
there is an open neighborhood O(y) of y such that U ∩ F(y′) �= ∅ for each y′ ∈ O(y); F
is continuous at y if it is both upper and lower semicontinuous at y. F is said to be upper
semicontinuous (lower semicontinuous, or continuous) on Y if it is upper semicontinuous
(lower semicontinuous, or continuous) at every y ∈ Y .

Lemma 1.1 Let X be a metric space, {An} be a sequence of nonempty subsets of X and A
be a nonempty compact subset of X. Suppose that for any open set O in X with O ⊃ A,
there is a positive integer N such that for any n ≥ N , O ⊃ An. Then for any sequence {xn}
with xn ∈ An, n = 1, 2, . . . , there is a cluster point x∗ of {xn} such that x∗ ∈ A.

Proof By way of contradiction, suppose that the opposite conclusion holds. Then for any x ∈
A, x is not a cluster point of {xn}, that is, there are an open neighborhood O(x) and a positive
integer n(x) such that xn /∈ O(x) for any n ≥ n(x). Since A ⊂ ∪x∈A O(x) and A is compact,
there are x1, x2, . . . , x p ∈ A such that A ⊂ ∪p

i=1 O(xi ). Let n0 = max{n(x1), . . . , n(x p)},
then we have xn /∈ ∪p

i=1 O(xi ) for all n ≥ n0. Since ∪p
i=1 O(xi ) is an open set in X and

123



J Glob Optim (2009) 44:149–157 151

∪p
i=1 O(xi ) ⊃ A, then there is n1 ≥ n0 such that ∪p

i=1 O(xi ) ⊃ An for all n ≥ n1. Finally
we obtain xn1 /∈ ∪p

i=1 O(xi ) and xn1 ∈ An1 ⊂ ∪p
i=1 O(xi ), a contradiction. 
�

Lemma 1.2 Let � and X be two metric spaces, λ ∈ �. Suppose that f : � → K (X) is
upper semicontinuous at λ. Then for any λn → λ and any xn ∈ f (λn), there is a cluster
point x∗ of {xn} such that x∗ ∈ f (λ).

Proof Since f is upper semicontinuous at λ and λn → λ, for any open set O in X with
O ⊃ f (λ), there is a positive integer N such that O ⊃ f (λn) for all n ≥ N . Then it follows
the conclusion from Lemma 1.1. 
�

The following lemma is due to Lemma 2.5 of [10].

Lemma 1.3 Let X and Y be two metric spaces, Am, A ∈ K (X), ym, y ∈ Y and gm, g be
continuous functions defined on X × Y, m = 1, 2, . . . . If h(Am, A) → 0, where h is the
Hausdorff distance defined on X, ym → y and sup(x,y)∈X×Y |gm(x, y)− g(x, y)| → 0, then

max
w∈Am

gm(w, ym) → max
w∈A

g(w, y).

The following lemma 1.4 is due to Theorem 2 of Fort [3], also see Lemma 2.1 of [10].

Lemma 1.4 Let Y be a complete metric space, X be a metric space and F : Y → K (X) be
an upper semicontinuous correspondence. Then there exists a dense Gδ set Q of Y such that
F is continuous at every y ∈ Q.

2 Main results

Theorem 2.1 Let (�, ρ) be a complete metric space, (X, d) be a metric space, f : � →
K (X) be an upper semicontinuous correspondence, R: Graph( f ) → R+ be a lower semi-
continuous function and E(λ) �= ∅ for any λ ∈ �. Then

(1) the equilibrium correspondence E : � → K (X) is upper semicontinuous; and
(2) there is a dense Gδ subset Q of � such that for any λ ∈ Q, M is structurally stable.

Proof (1) First, for any λ ∈ �, E(λ) = {x ∈ f (λ) : R(λ, x) = 0} = f (λ) ∩ {x ∈ X :
R(λ, x) ≤ 0}. The lower semicontinuity of R implies that {x ∈ X : R(λ, x) ≤ 0} is closed
and hence E(λ) is compact since f (λ) is compact.

Next we show that E is upper semicontinuous at λ. By way of contradiction, suppose that
there is an open set O of X with O ⊃ E(λ) such that there are a sequence {λn} with λn → λ

and a sequence {xn} with xn ∈ E(λn), n = 1, 2, 3, . . ., but xn /∈ O . Note that xn ∈ f (λn)

since xn ∈ E(λn). Since f is upper semicontinuous at λ and f (λ) is compact, by Lemma
1.2, there is a cluster point x of {xn} with x ∈ f (λ), that is, there is a subsequence {xnk }
of {xn} satisfying xnk → x . Note that xnk ∈ E(xnk ) and thus R(λnk , xnk ) = 0. Since R is
lower semicontinuous at (λ, x), we have R(λ, x) ≤ lim infnk→∞ R(λnk , xnk ) = 0. Hence
x ∈ E(λ) ⊂ O , which is a contradiction since xnk → x and O is open but xnk /∈ O for all nk .
This proves that the equilibrium correspondence E : � → K (X) is upper semicontinuous.

(2) By Lemma 1.4, there exists a dense Gδ subset Q of � such that the equilibrium cor-
respondence E : � → K (X) is continuous at every λ ∈ Q. Hence, M is structurally stable
at every λ ∈ Q. 
�
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Theorem 2.2 Under the assumptions of Theorem 2.1, if M is structurally stable at λ ∈ �,
then M is robust to ε-equilibria at λ ∈ �.

Proof Also by way of contradiction, suppose that M is not robust to ε-equilibria at some
λ ∈ �. Then there are a δ0 > 0, a sequence {εn} with εn > 0 and εn → 0 and a sequence
{λn} with λn → λ such that

h(E(λn, εn), E(λn)) ≥ δ0.

Since E(λn) ⊂ E(λn, εn), we can select xn ∈ E(λn, εn) such that

min
w∈E(λn)

d(xn, w) >
δ0

2
.

Furthermore, since xn ∈ E(λn, εn), then xn ∈ f (λn) and R(λn, xn) ≤ εn . Since f : � →
K (X) is upper semicontinuous at λ and f (λ) is compact, by Lemma 1.2, λn → λ and
xn ∈ f (λn) imply that there is a cluster point x of {xn} such that x ∈ f (λ), i.e., {xn} has
a subsequence {xnk } satisfying xnk → x . By lower semicontinuity of R at (λ, x), we have
R(λ, x) ≤ lim infnk→∞ R(λnk , xnk ) = 0. Hence x ∈ E(λ).

Since M is structurally stable at λ ∈ �, the correspondence E: � → K (X) is continuous
at λ, i.e., h(E(λnk ), E(λ)) → 0. By Lemma 1.3, we get

min
w∈E(λ)

d(x, w) ≥ δ0

2
,

which contradicts that x ∈ E(λ). Hence M must be robust to ε-equilibria at λ ∈ �. 
�
It follows from the same argument as the proof of Theorems 3.3 and 3.4 in [8] that

Theorem 2.3 Under the assumptions of Theorem 2.1, there exists a dense Gδ subset Q of
� such that ∀λ ∈ Q,∀λn → λ,∀εn → 0, we have

h(E(λn, εn), E(λ)) → 0.

Theorem 2.4 Under the assumptions of Theorem 2.1, if λ ∈ � is such that E(λ) is a singleton
set, then M is structurally stable and robust to ε-equilibria at λ ∈ �.

3 Applications

3.1 n-person noncooperative games

Let I = {1, . . . , n} be the set of players. For each i ∈ I, Xi , a metric space, is the strategy
set and ui : X = ∏n

i=1 Xi → R is the payoff function of i-th player, respectively. For each
i ∈ I , denote î = I \ {i}.
� = {λ = (u1, . . . , un; S1, . . . , Sn) : ∀i ∈ I, ui is continuous on X and supx∈X

∑n
i=1|ui (x)| < +∞, Si is a nonempty compact subset of Xi and ∃x ∈ S = ∏n

i=1 Si such that
∀i ∈ I, ui (xi , xî ) = maxwi ∈Si ui (wi , xî )}.

For any λ1 = (u11, . . . , u1n; S11, . . . , S1n), λ2 = (u21, . . . , u2n; S21, . . . , S2n) ∈ �,
define

ρ(λ1, λ2) = sup
x∈X

n∑

i=1

|u1i (x) − u2i (x)| +
n∑

i=1

hi (S1i , S2i )

where ∀i ∈ I, hi is the Hausdorff metric on Xi .
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It is easy to check that ρ is a metric. Next we show that

Lemma 3.1 (�, ρ) is a complete metric space.

Proof Let {λm} be any Cauchy sequence in �. Then for any ε > 0, there is a positive integer
P(ε) such that for any m, p ≥ P(ε),

ρ(λm, λp) = sup
x∈X

n∑

i=1

|umi (x) − u pi (x)| +
n∑

i=1

hi (Smi , Spi ) < ε.

For any i ∈ I , there is ui : X → R, such that lim p→∞ u pi (x) = ui (x) and ui is continuous
on X and, by Theorem 4.3.9 of [4], there is an Si ⊂ Xi such that Spi → Si and Si is nonempty
compact. Moreover, for any m ≥ p(ε),

sup
x∈X

n∑

i=1

|umi (x) − ui (x)| +
n∑

i=1

hi (Smi , Si ) ≤ ε.

Since λm = (um1, . . . , umn; Sm1, . . . , Smn) ∈ �, there is xm ∈ Sm = ∏n
i=1 Smi , such

that for any i ∈ I, umi (xm
i , xm

î
) = maxwi ∈Smi umi (wi , xm

î
).

Denote S = ∏n
i=1 Si . Since Sm → S,xm ∈ Sm , by Lemma 1.1, there is x ∈ S such that x

is a cluster point of {xm} and, without loss of generality, we assume that xm → x .
Since

|umi (xm
i , xm

î
) − ui (xi , xî )| ≤ |umi (xm

i , xm
î

) − ui (xm
i , xm

î
)| + |ui (xm

i , xm
î

) − ui (xi , xî )|→0,

then umi (xm
i , xm

î
) → ui (xi , xî ) and by Lemma 1.3, maxwi ∈Smi umi (wi , xm

î
) → maxwi ∈Si ui

(wi , xî ). Hence ∀i ∈ N , ui (xi , xî ) = maxwi ∈Si ui (wi , xî ). Thus λ = (u1, . . . , un; S1, . . . ,

Sn) ∈ �. This proves that (�, ρ) is complete and the proof is finished.
Consider the model M = {�, X, F, R} : � is a complete metric space, X is a metric space,

∀λ = (u1, . . . , un; S1, . . . , Sn) ∈ �,∀x ∈ X , define F(λ, x) = S = ∏n
i=1 Si ; ∀λ ∈ �,

the correspondence f (λ) = {x ∈ X : x ∈ F(λ, x)} = S, which is continuous, and f (λ) is
nonempty compact for each λ ∈ �. ∀λ ∈ �,∀x ∈ f (λ) = S, define

R(λ, x) =
n∑

i=1

[max
wi ∈Si

ui (wi , xî ) − ui (xi , xî )].

∀λ ∈ �, denote by E(λ) the set of all Nash equilibria of the game λ, then E(λ) �= ∅. It is
easy to show that R(λ, x) ≥ 0 and that R(λ, x) = 0 if and only if x ∈ E(λ). 
�
Lemma 3.2 R : � × X → R+ is continuous.

Proof ∀λm = (um1, . . . , umn; Sm1, . . . , Smn) ∈ �,λm → λ = (u1, . . . , un; S1, . . . , Sn),

∀xm ∈ f (λm), xm → x , let us show that R(λm, xm) → R(λ, x). In fact, ∀i ∈ N , we
have shown in Lemma 3.1 that umi (xm

i , xm
î

) → ui (xi , xî ) and maxwi ∈Smi umi (wi , xm
î

) →
maxwi ∈Si ui (wi , xî ). Hence R(λm, xm) → R(λ, x). 
�

Now it follows that Theorems 2.1-2.3 hold for the model M above.

Remark 3.1 Note that there is no convexity conditions in the n-person noncooperative game
problems while the existence of Nash equilibrium points is added in the definition of �.
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3.2 Multiobjective optimization problem

Let X be a complete metric space and

� = {λ = (ϕ, A) : ϕ = (ϕ1, . . . , ϕm) : X → R
m is continuous,

A is a nonempty compact subset of X and sup
x∈X

||ϕ(x)|| < +∞}

For any λ1 = (ϕ1, A1), λ2 = (ϕ2, A2) ∈ �, define

ρ(λ1, λ2) = sup
x∈X

||ϕ1(x) − ϕ2(x)|| + h(A1, A2)

where h is the Hausdorff metric on X . It is easy to show that

Lemma 3.3 (�, ρ) is a complete metric space.

Given any λ = (ϕ, A), it defines a multiobjective optimization problem minx∈A ϕ(x). Since
ϕ is continuous and A is compact, by Corollary 1.2 (p.136) in [5], there must be an x ∈ A,
such that for any y ∈ A, ϕ(x) − ϕ(y) /∈ intRm+ and x is called a weakly efficient solution
of the multiobjective optimization problem. Denote by E(λ) the set of all weakly efficient
solutions of λ ∈ �.

Consider the model M = {�, X, F, R}, where � is a complete metric space, X is a metric
space and ∀λ = (ϕ, A) ∈ �,∀x ∈ X , define F(λ, x) = A. For any λ ∈ �, the correspon-
dence f (λ) = {x ∈ X : x ∈ F(λ, x)} = A, which is continuous, and f (λ) is nonempty
compact. For any λ ∈ � and any x ∈ f (λ) = A, define

R(λ, x) = max
y∈A

min
z∈Z

〈z, ϕ(x) − ϕ(y)〉,

where Z = {z ∈ R
m+ : ||z|| = 1}. Note that since ϕ is continuous, 〈z, ϕ(x)−ϕ(y)〉 is continu-

ous with respect to x, y and z, and Z is compact, then minz∈Z 〈z, ϕ(x)−ϕ(y)〉 is a continuous
function with respect to (x, y). Moreover, since A is compact, maxy∈A minz∈Z 〈z, ϕ(x) −
ϕ(y)〉 must exist.

Lemma 3.4 (1) ∀λ = (ϕ, A) ∈ �,∀x ∈ f (λ) = A, R(λ, x) ≥ 0, and R(λ, x) = 0 if and
only if x ∈ E(λ).

(2) R(λ, x) is lower semicontinuous.

Proof (1) Since x ∈ A, R(λ, x) ≥ minz∈Z 〈z, f (x) − f (x)〉 = 0. If R(λ, x) = 0, then
∀y ∈ A, minz∈Z 〈z, ϕ(x) − ϕ(y)〉 ≤ 0. If x /∈ E(λ), then there exists y ∈ A such that
ϕ(x) − ϕ(y) ∈ intRm+ and thus for any z ∈ Z , 〈z, ϕ(x) − ϕ(y)〉 > 0. By the compactness of
X , there must be minz∈Z 〈z, ϕ(x) − ϕ(y)〉 > 0, a contradiction. Hence x ∈ E(λ).

Conversely, if x ∈ E(λ), i.e., ∀y ∈ A, ϕ(x) − ϕ(y) /∈ intRm+. Let I (y) = {i : ϕi (x) −
ϕi (y) ≤ 0}, then I (y) �= ∅. Take i0 ∈ I (y) and let z0 = (z1, . . . , zm), where zi0 = 1, zi =
0(i �= i0). Then z0 ∈ Z and minz∈Z 〈z, ϕ(x) − ϕ(y)〉 ≤ 〈z0, ϕ(x) − ϕ(y)〉 ≤ 0. Thus,

R(λ, x) = max
y∈A

min
z∈Z

〈z, ϕ(x) − ϕ(y)〉 ≤ 0.

Note that we have shown that R(λ, x) ≥ 0. Therefore, R(λ, x) = 0.
(2) We only need to show that ∀ε > 0,∀λn = (ϕn, An) ∈ �,λn → λ = (ϕ, A),∀xn ∈

An, xn → x ∈ A, then there exists a positive integer N , such that ∀n ≥ N , R(λn, xn) >

R(λ, x) − ε.

123



J Glob Optim (2009) 44:149–157 155

First, there exists a y ∈ A such that minz∈Z 〈z, ϕ(x) − ϕ(y)〉 = R(λ, x). For any ε > 0,
since λn → λ, we have ϕn → ϕ, An → A, which imply that there exists a positive inte-
ger N1 such that ∀n > N1, supx∈X ||ϕn(x) − ϕ(x)|| < ε

4 and there is yn ∈ An such that
yn → y. Then the continuity of ϕ implies that there is a positive integer N2 such that
||ϕ(xn) − ϕ(x)|| < ε

4 and ||ϕ(yn) − ϕ(y)|| < ε
4 for all n ≥ N2.

Let N = max{N1, N2}. Then for all n ≥ N , we have

||ϕn(xn) − ϕ(x)|| ≤ ||ϕn(xn) − ϕ(xn)|| + ||ϕ(xn) − ϕ(x)|| <
ε

2
,

||ϕn(yn) − ϕ(y)|| ≤ ||ϕn(yn) − ϕ(yn)|| + ||ϕ(yn) − ϕ(y)|| <
ε

2
.

For any z ∈ Z , by Cauchy–Schwarz inequality,

|〈z, (ϕn(xn) − ϕn(yn)) − (ϕ(x) − ϕ(y))〉|
≤ |〈z, (ϕn(xn) − ϕ(x))〉| + |〈z, (ϕn(yn)) − ϕ(y))〉|
≤ ||z||||ϕn(xn) − ϕ(x)|| + ||z||||ϕn(yn) − ϕ(y)|| < ε.

And thus

〈z, ϕn(xn) − ϕn(yn)〉 > 〈z, ϕ(x) − ϕ(y)〉 − ε,

min
z∈Z

〈z, ϕn(xn) − ϕn(yn)〉 > min
z∈Z

〈z, ϕ(x) − ϕ(y)〉 − ε,

R(λn, xn) ≥ min
z∈Z

〈z, ϕn(xn) − ϕn(yn)〉 > min
z∈Z

〈z, ϕ(x) − ϕ(y)〉 − ε = R(λ, x) − ε. �

Therefore, Theorems 2.1–2.4 hold for the model M above.

3.3 Fixed point problems

Let (X, d) be a bounded complete metric space and

�={λ=(ϕ, A) : ϕ : X→K (X) is upper semicontinuous and ∃x∈A such that x ∈ ϕ(x)}.
∀λ1 = (ϕ1, A1), λ2 = (ϕ2, A2) ∈ �, define

ρ(λ1, λ2) = sup
x∈X

h(ϕ1(x), ϕ2(x)) + h(A1, A2),

where h is the Hausdorff metric on X .

Lemma 3.5 (�, ρ) is a complete metric space.

Proof Let {λm} be any Cauchy sequence in �. Then for any ε > 0, there exists a positive
integer P(ε) such that for all m, p ≥ P(ε),

ρ(λm, λp) = sup
x∈X

h(ϕm(x), ϕp(x)) + h(Am, Ap) < ε.

There exist ϕ : X → K (X) and A ∈ K (X) such that ϕp(x) → ϕ(x), Ap → A and for all
m ≥ P(ε),

sup
x∈X

h(ϕm(x), ϕ(x)) + h(Am, A) ≤ ε.
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It is easy to check that ϕ is upper semicontinuous on X . Since λm = (ϕm, Am) ∈ �, there are
xm ∈ Am such that xm ∈ ϕm(xm), m = 1, 2, . . .. It follows from h(Am, A) → 0 that there is
an x which is a cluster of {xm} and, without loss of generality, we assume that xm → x .

Since ϕ is upper semicontinuous at x , there is an m0 ≥ P(ε) such that for all m ≥
m0, ϕ(xm) ⊂ U (ε, ϕ(x)) = {u ∈ X : d(u, y) < ε, for some y ∈ ϕ(x)}, and thus

xm ∈ ϕm(xm) ⊂ U (2ε, ϕ(xm)) ⊂ U (3ε, ϕ(x)).

Letting m → ∞, we obtain d(x, ϕ(x)) ≤ 3ε. Since ε can be arbitrarily small, we have
d(x, ϕ(x)) = 0 which implies that x ∈ ϕ(x). Therefore, λ = (ϕ, A) ∈ �. Now we can
conclude that (�, ρ) is a complete metric space.

Any given λ = (ϕ, A) ∈ � determines a fixed point problem: finding x ∈ A such that
x ∈ ϕ(x). Denote by E(λ) the set of all fixed points of λ ∈ �. By the definition of �, we
have E(λ) �= ∅.

Consider the following model M = {�, X, F, R}, where � is a complete metric space
and X is a metric space; ∀λ = (ϕ, A) ∈ � and ∀x ∈ X , define F(λ, x) = A and ∀λ ∈ �,
the correspondence f (λ) = {x ∈ X : x ∈ F(λ, x)} = A, which is continuous and f (λ) is
nonempty compact set. ∀λ ∈ �,∀x ∈ f (λ) = A, define

R(λ, x) = d(x, ϕ(x)) = min
y∈ϕ(x)

d(x, y),

where d is the distance function on X .
Clearly, R(λ, x) ≥ 0. If R(λ, x) = 0, then x ∈ ϕ(x), x ∈ E(λ). Conversely, if x ∈ E(λ),

then x ∈ A, x ∈ ϕ(x), R(λ, x) = 0. 
�

Lemma 3.6 R(λ, x) is lower semicontinuous.

Proof It suffices to show that ∀ε > 0,∀λn = (ϕn, An) ∈ �,λn → λ = (ϕ, A) ∈ �,∀xn ∈
An, xn → x ∈ A, then there is a positive integer N , such that ∀n ≥ N , R(λn, xn) >

R(λ, x)−ε. By Proposition 21 of [2](p.118), d(x, ϕ(x)) = miny∈ϕ(x) d(x, y) is lower semi-
continuous at x . Hence there is a positive integer N1 such that∀n ≥ N1, miny∈ϕ(xn) d(xn, y)>

miny∈ϕ(x) d(x, y) − ε
2 .

For each n = 1, 2, . . . , there is a yn ∈ ϕn(xn) such that d(xn, yn) = miny∈ϕn(xn) d(xn, y).
Since h(ϕn(xn), ϕ(xn)) → 0, yn ∈ ϕn(xn), then there is a positive integer N2 such that
∀n ≥ N2, ∃y′

n ∈ ϕ(xn) such that d(yn, y′
n) < ε

2 .
Now letting N = max{N1, N2}, then ∀n ≥ N ,

R(λn, xn) = min
y∈ϕn(xn)

d(xn, y) = d(xn, yn) ≥ d(xn, y′
n) − d(y′

n, yn)

≥ min
y∈ϕ(xn)

d(xn, y) − ε

2
> min

y∈ϕ(x)
d(x, y) − ε = R(λ, x) − ε. 
�

Theorems 2.1–2.4 hold for the model M above.

Remark 3.2 Note that there is also no convexity conditions in the fixed point problems while
the existence of fixed points was added in the definition of �, because convexity is only one
sufficient condition for existence.
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